Square Foot Gardening at School

Pablo Vimos - Organic Master Gardener

Overview

> Growing food at school using a simple gardening method while optimizing available space.

Take Away

Create a Diverse \& Dynamic Garden

Cultivate Year Round
Garden as Classroom

Curriculum Integration

Pablo

Agronomy \&
Landscape Ecology
Weekly Garden Workshop

- 2 schools Vancouver
- 1 school Burnaby

Master Gardener

- Embark Learning Garden - SFU

Garden Beds

Growing Food on Small Spaces

Soil

Wood

Vancouver School District

Metal

Burnaby School District

Plastic

Surrey School District

Selfwatering

Life Space Gardens

Planting Approach

Make a Row (drill)

Drop seeds into row

- $\quad 1.5 \mathrm{~cm}$ small crops
- $\quad 2.5 \mathrm{~cm}$ large crops

Row Spacing - 30 cm
Thinning to right distance

Single Row \& Double Row

SFG

OVER 2 MILLION SOLD

Therevolutionary way to Grour Nore in Less Sipace

SFG Basics - Garden Bed

- Build a garden bed using wooden boards.
- Fill with garden soil which is weed free and free of stones.
- Divide garden bed into 1 ft by 1 ft squares (or 30 cm by 30 cm).
- Add a Grid by nailing string across the box.
- Plant each square with a different crop, using close spacing.
- As soon you harvest a square, plant it with a different one.

SFG Basics - Planting Space

SMALL PLANT (S)		MEDIUM PLANT (M)	
Arugula Beet (small) Carrot Onion Set Mesclun Parsnip Radish Scallion Turnip (small)	16	Beet (large) Mustard Onion Bulb Pak Choi Pea Spinach Turnip (large)	9 \bullet. .
LARGE PLANT (L)		EXTRA LARGE PLANT (XL)	
Fava Bean Garlic Kohlrabi * Lettuce Shallots Swiss Chard	4 \square	Broccoli * Brussels Sprouts * Cabbage * Cauliflower * Collard * Kale * * seedling	

Vegetable	Good Companion	Bad Companion
Bean	Carrots, Corn, Cucumber, Cauliflower, Cabbage, Eggplant, Peas, Potato, Swiss Chard, Marigold, Nasturtium, Oregano	Chive, Onion, Garlic, Leek, Shallots
Carrots	Beans, Peas, Leaf Lettuce, Chives, Onions, Leeks, Rosemary, Sage, Tomato, Peppers, Thyme	Dill
Peas	Carrots, Turnips, Radishes, Cucumbers, Corn, Beans, Most Vegetables \& Herbs	Onions, Garlic, Shallots, Leeks, Tomato, Potato, Squash

SFG Basics - Crop Rotation

SFG Basics - Station Sowing

- Make shallow holes for seeds, no deeper than a fingernail.
- Drop seeds in holes and cover with soil. For most crops 1-2 seeds are enough, but for carrots and parsnips use 4-5 seeds.
- For very small seeds use a pinch of seeds (mustard).
- Split seedlings when transplanting (onions, beets, peas, corn).
- Water the soil, no the plant.

2	000		φ	
	$\cdots 10$			
	-00\%		φ	φ
\bigcirc	B \&	or		
- 0	B P			
- 0	$\infty>$			
\bigcirc	$\varphi \varphi$		β	s
\bigcirc	$\varphi \varphi$			
\bigcirc	$\varphi \varphi$			∞
CO			$\varphi \varphi$	
			$\varphi \cdot$	
	∞)		$\varphi \cdot \varphi$	
0		\bigcirc		
			--	\bigcirc
			- -	-
			$0 \cdot$	\bigcirc

SFG @ SCHOOLS

Adjustments

- No Grid.
- Use Square Seeding.
- Plant 2-3 sq with same crop.

Think Squares, No Rows

Hoop houses

- Excessive Rain /Snow
- Cold Air (night frost)
- Wind

Garden Year Round

Curriculum Links

Curricular Ideas

Curricular Ideas

- Mathematics - Array, Calculate number of seeds per square and deduce number of seeds for all squares to plant.
- Cycle - Plant life cycle, Water cycle in the soil, CO2 cycle and photosynthesis.
- System - Effects of energy transfer on food production. Greenhouse effect.
- Science - Pollinators, Pollination and seed production, Asexual reproduction.

Than You!

Pablo Vimos 604-710-6048
roots2growbc@gmail.com roots2grow

